2. Modifying a Pandas DataFrame. In Pandas, you can modify a DataFrame by changing, adding, or removing rows and columns. To change a value, use indexing and assignment. To add rows or columns, you can use methods like loc[]
and assign()
. To remove rows or columns, you can use methods like drop()
.
For example, you can change the age of a student like this: df.loc[1, 'Age'] = 23
.
# Import the Pandas library
import pandas as pd
# Create a Pandas DataFrame with student information
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [20, 22, 21]})
# Modify the age of the second student
df.loc[1, ___] = 23
# Add a new student's information
df = df.append(pd.Series({'Name': 'David', 'Age': 19}), ignore_index=True)
# Remove the first student from the DataFrame
df = df.___
# Print the modified DataFrame
print(df)
# Import the Pandas library
import pandas as pd
# Create a Pandas DataFrame with student information
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [20, 22, 21]})
# Modify the age of the second student
df.loc[1, 'Age'] = 23
# Add a new student's information
df = df.append(pd.Series({'Name': 'David', 'Age': 19}), ignore_index=True)
# Remove the first student from the DataFrame
df = df.drop(0)
# Print the modified DataFrame
print(df)
test_object("df")
success_msg("You have correctly modified the Pandas DataFrame.")
append()
and drop()
for additions and removals.